192

Chapter 12

SPLIT AND FACTORED FORMS

12.1 The Concept

Factored forms of numerical operators are used extensively in constructing and ap-
plying numerical methods to problems in fluid mechanics. They are the basis for a
wide variety of methods variously known by the labels “hybrid”, “time split”, and
“fractional step”. Factored forms are especially useful for the derivation of practical
algorithms that use implicit methods. When we approach numerical analysis in the
light of matrix derivative operators, the concept of factoring is quite simple to present
and grasp. Let us start with the following observations:

1. Matrices can be split in quite arbitrary ways.

2. Advancing to the next time level always requires some reference to a previous
one.

3. Time marching methods are valid only to some order of accuracy in the step
size, h.

Now recall the generic ODE’s produced by the semi-discrete approach

du L=
- Au— 12.1
y7 u—f (12.1)

and consider the above observations. From observation 1 (we split A) :

di

193

194 CHAPTER 12. SPLIT AND FACTORED FORMS

where A = [A; + A;] but Ay and A, are not unique. For the time march let us choose
the simple, first-order,! explicit Euler method. Then, from observation 2 (new data

Ups1 in terms of old u,):
tnsr = [T + hA;, + hAsJu, — hf + O(h?) (12.3)
ot its equivalent
Ut = [T +hAT + hAg] = R[AyAs]|u, — hf + O(h?)
Finally, from observation 3 (we drop higher order terms —h2[A1As]u,:
tUnpr = [1 +hA[T + hAsJu, — hf + O(h?) (12.4)

Notice that Egs. 12.3 and 12.4 have the same formal order of accuracy and, in
this sense, neither one is to be preferred over the other. However, their numerical
stability can be quite different. and techniques to carry out their numerical evaluation
can have arithmetic operation counts that vary by orders of magnitude. Both of these
considerations are investigated later. Here we seek only to apply to some simple cases
the concept of factoring.

12.2 Factoring Physical Representations — Time
Splitting

Suppose we have a PDE that represents both the processes of convection and dissi-
pation. The semi-discrete approach to its solution might be put in the form

—

d - -
d_:j = A.u+ Aqu + (be) (12.5)

where A. and A, are matrices representing the convection and dissipation terms,
respectively; and their sum forms the A matrix we have considered in the previous
sections. Choose again the explicit Euler time march so that

Unyr = [1 + hAg + hAJu, + h(bc) + O(R?) (12.6)

Now consider the factored form

—

tgr = [T +hAJ([1 + hAJu, + h(be))
= [1 +hAg+ hAJu, + h(be) + B2 [A4) ([Addu, + (be)) +O(R?) (12.7)
Original Unfactored Terms Higher Order Terms

!Second-order time-marching methods are considered later.

12.2. FACTORING PHYSICAL REPRESENTATIONS — TIME SPLITTING 195

and we see that Eq. 12.7 and the original unfactored form Eq. 12.6 have identical
orders of accuracy in the time approximation. Therefore, on this basis, their selection
is arbitrary. In practical applications? equations such as 12.7 are often applied in a
predictor-corrector sequence. In this case one could write

fnp1 = [I + hAJu, + h(be)
Unp1 = [I + hAglins (12.8)
Factoring can also be useful to form split combinations of implicit and explicit
techniques. For example, another way to approximate Eq. 12.6 with the same order

of accuracy is given by the expression

—

tpr = [T —hAJ7 ([T + hAJu, + h(be))
= [I +hAg+ hAJu, + h(be) +O(h?) (12.9)

Original Unfactored Terms

where in this approximation we have used the fact that
[T —RhAg ™" =T+ h[Ag] + A2 A" + -

if h-||Aq]| < 1, where ||Ag4|| is some norm of [A;]. This time a predictor-corrector
interpretation leads to the sequence

inyr = [I + hAJu, + h(be)
[T — hAgJtupsr = fings (12.10)

The convection operator is applied explicitly, as before, but the diffusion operator is
now implicit, requiring a tridiagonal solver if the diffusion term is central differenced.
Since numerical stiffness is generally much more severe for the diffusion process, this
factored form would appear to be superior to that provided by Eq. 12.8. However,
the important aspect of stability has yet to be discussed.

We should mention here that Eq. 12.9 can be derived for a different point of view
by writing Eq. 12.6 in the form

U (A o+ [Aaltas + (b6) + O(R?)

Then
[[— hAglungr =1 + hA Ju, + h(be)

which is identical to Eq. 12.10.

2We do not suggest that this particular method is suitable for use. We have yet to determine its
stability, and a first-order time-march method is usually unsatisfactory.

196 CHAPTER 12. SPLIT AND FACTORED FORMS
12.3 Factoring Space Matrix Operators in 2—-D

12.3.1 Mesh Indexing Convention

Factoring is widely used in codes designed for the numerical solution of equations
governing unsteady two- and three-dimensional flows. Let us study the basic concept
of factoring by inspecting its use on the linear 2-D scalar PDE that models diffusion:

ou 0*u 0%u

gzt 9.
ot 0x? + Oy? (12.11)

We begin by reducing this PDE to a coupled set of ODE’s by differencing the space
derivatives and inspecting the resulting matrix operator.

A clear description of a matrix finite-difference operator in 2- and 3-D requires
some reference to a mesh. We choose the 3 x 4 point mesh?® shown in the Sketch 12.12.
In this example M, the number of (interior) z points, is 4 and M, the number of
(interior) y points is 3. The numbers 11, 12, --- . 43 represent the location in the
mesh of the dependent variable bearing that index. Thus ug, represents the value of
uat g =3 and k = 2.

cC ¢ ¢ ©
M, © 13 23 33 43 ©
ke 12 22 32 42 ©
cC ¢ ¢ ©

Mesh indexing in 2-D.

12.3.2 Data Bases and Space Vectors

The dimensioned array in a computer code that allots the storage locations of the
dependent variable(s) is referred to as a data-base. There are many ways to lay out
a data-base. Of these, we consider only two: (1), consecutively along rows that are
themselves consecutive from k& = 1 to M,, and (2), consecutively along columns that
are consecutive from j = 1 to M,. We refer to each row or column group as a
space vector (they represent data along lines that are continuous in space) and label

3This could also be called a 5 x 6 point mesh if the boundary points (labeled @ in the sketch)
were included. but in these notes we describe the size of a mesh by the number of interior points.

12.3. FACTORING SPACE MATRIX OPERATORS IN 2-D 197

their sum with the symbol U. In particular, (1) and (2) above are referred to as -
vectors and y-vectors, respectively. The symbol U by itself is not enough to identify
the structure of the data-base and is used only when the structure is immaterial or
understood.

To be specific about the structure, we label a data-base composed of x-vectors
with U®) . and one composed of y-vectors with U®¥. Examples of the order of
indexing for these space vectors are given in Eq. 12.16 part a and b.

12.3.3 Data Base Permutations

The two vectors (arrays) are related by a permutation matrix P such that
v® = p,U% and UW=PpP,U® (12.13)

where

_ pT _ p-1
P, = P, = P,

Now consider the structure of a matrix finite-difference operator representing 3-
point central-differencing schemes for both space derivatives in two dimensions. When
the matrix is multiplying a space vector U, the usual (but ambiguous) representation
is given by A,4,. In this notation the ODE form of Eq. 12.11 can be written *

d
d—lt] = Ay, U + (be) (12.14)

If it is important to be specific about the data-base structure, we use the notation
Aﬁjﬂy or A;y_gy, depending on the data—base chosen for the U it multiplies. Examples
are in Eq. 12.16 part a and b. Notice that the matrices are not the same although
they represent the same derivative operation. Their structures are similar, however,
and they are related by the same permutation matrix that relates U(*) to U®. Thus

AR = P, - AY, - P, (12.15)

z+y

*Notice that Ay4, and U, which are notations used in the special case of space vectors, are
subsets of A and u, used in the previous sections.

198 CHAPTER 12. SPLIT AND FACTORED FORMS

| |

| | 21
| 0 | 31
| | 41

0 12
AR Ut =
T+y

13

x
o | T e 43
a:Elements in 2-dimensional, central-difference, matrix
operator, A4, for 3x4 mesh shown in Sketch 12.12.

Data base composed of M, x-vectors stored in U,
Entries for x — z, for y — o, for both — e.

(12.16)

Aﬁf’_ﬂy W — .

0 0
L | | x| o e] 43

b: Elements in 2-dimensional, central-difference, matrix
operator, A;4,, for 3x4 mesh shown in Sketch 12.12.
Data base composed of M, y-vectors stored in U®).

Entries for x — =z, for y — o, for both — e.

12.3. FACTORING SPACE MATRIX OPERATORS IN 2-D 199

12.3.4 Space Splitting and Factoring

We are now prepared to discuss splitting in two dimensions. It should be clear that

the matrix Aﬁjfﬁy can be split into two matrices such that

A(GU)

z+y

=AY 4+ AW (12.17)
where Al®) and A(yx) are shown in Eq. 12.22. Similarily
AY), = AW 4 AW (12.18)

where the split matrices are shown in Eq. 12.22.
The permutation relation also holds for the split matrices so

A = P AW P,

Y

and

A = P AW P

xr

The splittings in Eqgs. 12.17 and 12.18 can be combined with factoring in the
manner described in Section 12.2. As an example (first-order in time), applying the
implicit Euler method to Eq. 12.14 gives

U = U + h[AD + AD|UE) + hibe)

or

Y

(1= hAL) — AP U, = U + h(be) + O(h?) (12.19)
As in Section 12.2, we retain the same first order accuracy with the alternative
(1= hAD|[1 = hAD| UL, = UL + h(be) + O(h?) (12.20)

Write this in predictor-corrector form and permute the data base of the second row.
There results

(1= hAD|0 = U 4 h(be)
[1—rAW U, = oW (12.21)

200

CHAPTER 12. SPLIT AND FACTORED FORMS

8 8 8

The splitting of A

(=)

T+y*

(12.22)

12.3. FACTORING SPACE MATRIX OPERATORS IN 2-D 201

. | | | :
el e |
- v | |
AW W = W
| B B
| I B
L | | x| z
Y | | |) (12.23)
0 | | |
| | |
| oo | |
| o 0o o | |
| o | |
A(yy) LW — 7w
| | |
| | |
| | |
| | | o o
| | | o o o
L | | | o ol

The splitting of Al

T+y*

202 CHAPTER 12. SPLIT AND FACTORED FORMS

12.4 Second-Order, Implicit, Split & Factored Meth-
ods

One can construct O(h?) methods by using certain second-order time-march meth-
ods. For example, apply the trapezoidal method to Eq. 12.14 where the derivative
operators have been split as in Eq. 12.17 or 12.18. Let the data base be immaterial
and the (bc¢) be time invariant. There results

1 1 1 1o
[] — hA, - §hAy] Upir = [1 +ShAL 4 ShA| U+ h(be) + O0®) (12,20

Factor both sides giving

1 1 1
[[1 _ §hAx] [1 — ShA,] A, Un+1
1 1 1
[[+ 5|1+ 50 = 02 404,00+ by + 00%) (1225)

Then notice that the combination $h*[A;A,](Uys1 — Un) is proportional to A3 since
the leading term in the expansion of (U,4+; — U,) is proportional to h. Therefore, we
can write

! ! ! !
[1 _ §hAx] [1 _ §hAy] Unir = [1 + §hA$] [I + 5hAy] U, + h(be) + O(h*)(12.26)

and both the factored and unfactored form of the trapezoidal method are second-order
accurate in the time march.

An alternative form of this kind of factorization is the classical ADI (alternating
direction implicit) method® usually written

1 ~ 1 1
[1 - §hAx]U - [1 + §hAy] Un+ ShE,
1 1 ~ 1
[1 - §hAy] Uppr = [1 + 5/1/190] 0+ ShFo +O(K) (12.27)
For idealized commuting systems the methods given by Eqgs. 12.26 and 12.27 differ

only in their evaluation of a time-dependent forcing term.

12.5 Importance of Factored Forms in 2 and 3 Di-
mensions

When the time-march equations are stiff and implicit methods are required to permit
reasonably large time steps, the use of factored forms becomes a very valuable tool

5A form of the Douglas or Peaceman-Rachfort methods.

12.5. IMPORTANCE OF FACTORED FORMS IN 2 AND 3 DIMENSIONS 203

for realistic problems. Consider. for example, the problem of computing the time
advance in the unfactored form of the trapezoidal method given by Eq. 12.24

1 1
[I—§M%MPQH:[I+SM%ﬂkh+h®@

Forming the right hand side poses no problem, but finding U, 41 requires the solution
of a sparse, but very large, set of coupled simultaneous equations having the matrix
form shown in Eq. 12.16 part a and b. Furthermore, in real cases involving the Euler
or Navier-Stokes equations, each symbol (o, z. ®) represents a 4 x 4 block matrix with
entries that depend on the pressure. density and velocity field. Suppose we were to
solve the equations directly. The forward sweep of a simple Gaussian elimination fills®
all of the 4 x 4 blocks between the main and outermost diagonal” (e.g. between e
and o in Eq. 12.16 part b.). This must be stored in computer memory to be used to
find the final solution in the backward sweep. If V. represents the order of the small
block matrix (4 in the 2-D Euler case), the approximate memory requirement is

(Ne x M) - (N. x M) - M,

floating point words. Here it is assumed that M, < M,. It M, > M,, M, and M,
would be interchanged. A moderate mesh of 60 x 200 points would require over 11
million words to find the solution. Actually current computer power is able to cope
rather easily with storage requirements of this order of magnitude. Since they will also
have computing speeds of over one gigaflop® direct solvers may then become useful
for finding steady-state solutions of practical problems in two dimension. However, a
three-dimensional solver would require a memory of approximatly

NZ-MZ-M?-M,

words and, for well resolved flow fields, this probably exceeds memory availability for
some time to come.

On the other hand, consider computing a solution using the factored implicit equa-
tion 12.25. Again computing the right hand side poses no problem. Accumulate the
result of such a computation in the array (RHS). One can then write the remaining
terms in the two-step predictor-corrector form

(1= 1hAD|0@ = (RHS)
{I—%hA(y)]U(i)l = UW O

Yy n

SFor matrices as small as those shown there are many gaps in this “fill”, but for meshes of
practical size the fill 1s mostly dense.

“The lower band is also computed but does not have to be saved unless the solution is to be
repeated for another vector.

80ne billion floating-point operations per second.

204 CHAPTER 12. SPLIT AND FACTORED FORMS

which has the same appearance as Eq. 12.21 but is second-order time accurate. The
first step would be solved using M, uncoupled block tridiagonal solvers”. Inspecting
the top of Eq. 12.22, we see that this is equivalent to solving M, one-dimensional
problems, each with M, blocks of order N,. The temporary solution U/*) would then
be permuted to U®) and an inspection of the bottom of Eq. 12.23shows that the final
step consists of solving M, one-dimensional implicit problems each with dimension

M,

12.6 The Delta Form

Clearly many ways can be devised to split the matrices and generate factored forms.
One way that is especially useful. for ensuring a correct steady-state solution in a
converged time-march, is referred to as the “delta form” and we develop it next.

Consider the unfactored form of the trapezoidal method given by Eq. 12.24, and
let the (bc¢) be time invariant:

1 1 1 1
I—Shd, - §hAy] Uppr = [1 +ohAL+ §hAy] U, + hibe) + O(h?)
From both sides subtract | |
I— ~hA, — ~hA,|U,
[2 2 y] v

leaving the equality unchanged. Then, using the standard definition of the difference
operator A,

AUvn - Un+1 - Un
one finds
1 1
I- §hAI - 5hAy AU, = h[Az4, U, + (be)] + O(h?) (12.28)
Notice that the right side of this equation is the product of h and a term that is
identical to the right side of Eq. 12.14. our original ODE. Thus, if Eq. 12.28 converges.

it is guaranteed to converge to the correct steady-state solution of the ODE. Now we
can factor Eq. 12.28 and maintain O(h?) accuracy. We arrive at the expression

[1 - %hAI] [1 _ %hAy]AUn = h[AgsyUn + (be)] + O(R) (12.29)

This is the delta form of a factored, 2nd-order, 2-D equation.

%A block tridiagonal solver is similar to a scalar solver except that small block matrix operations
replace the scalar ones, and matrix multiplications do not commute.

12.7. FACTORED FORMS EMPLOYING FLUX SPLITTING 205

The point at which the factoring is made may not effect the order of time-accuracy,
but it can have a profound effect on the stability and convergence properties of a
method. For example, the unfactored form of a first-order method derived from the
implicit Euler time march is given by Eq. 12.19, and if it is immediately factored,
the factored form is presented in Eq. 12.20. On the other hand. the delta form of the
unfactored Eq. 12.19 is

(I — hA, — hA)AU, = h[App, U, + (be)] O(h)

and its factored form becomes!®

[T — hA[I — hA AU, = h[Aps, U, + (be)] O(h) (12.30)

In spite of the similarities in derivation, the time convergence properties of Eq. 12.20
and Eq. 12.30 are vastly different.

12.7 Factored Forms Employing Flux Splitting

We shall now investigate factoring in three-dimensions and the use of flux splitting as
a means to further split and factor our systems. The three-dimensional system which
we will be used here is

@-I-g—f-l-z—j—l-aaf 0 (12.31)
with Jacobian matrices £ = AQ, F' = B(@). and G = C'() defined in the usual way.
Applying implicit Euler time differencing, recasting in “delta” form we have

[l + hé A" + hé,B" 4+ h6,C"|AQ" = —h (6 E" + 6,F" + 6.G™) (12.32)
Factoring

[T + hé, A"| [T + h6,B"] [I + h6.C"] AQ™ = —h [6,E" + &,F" + 6,G"] (12.33)

which results (for central space difference approximating é,., é,, and ¢,) in the block
tridiagonal system solution process.
Defining flux-vector splitting in 3D,

E = AQ=(AT+A)Q=Et+E"

F = BQ=(B*"+B)Q=F"+F~

G = CQ=(CT+CH)Q=G"+G (12.34)
)

10Notice that the only difference between the O(h?) method given by Eq. 12.29 and the O(h)
method given by Eq. 12.30 i1s the appearance of the factor % on the left side of the O(h?) method.

206 CHAPTER 12. SPLIT AND FACTORED FORMS

Applying the splitting to Eq. 12.32, we have

[+ h(82AY +6]A” + 8B + 6/ B~ + 62CT +61C7)| AQ" =
—h (S8BT + 6B + 80 FF + 8] F~ + 6:GY +6/G7) = R (12.35)

with the usual forward and backward difference definitions of ¢/, 6%, etc.

The full unfactored algorithm of Eq. 12.35 is not really much different in terms
of the operator form than the central difference scheme of Eq. 12.32. Except for the
details of the elements in the large banded system and the inherent dissipation of
the Flux Split scheme, the unfactored scheme. Eq. 12.35 is still a large block banded
system which is difficult and costly to solve. We can reduce the system by factoring
as we did before. One possibility is a three-factor scheme

[+he AT + LA [T+ 8B +6/B7| [I +62C* +6/C7| AQ™ = B (12.36)

which requires three block tridiagonal inversions. and is equivalent to a central differ-
encing and added artificial dissipation algorithm. This is very similar to the algorithm
defined in Eq. 12.33. We shall see in the scalar analysis given in Chapter 13 that, the
three factor approximate factorization algorithm (for the scalar wave equation using
central differencing, periodic analysis and without dissipation) is unconditionally un-
stable. Now dissipation will mitigate some of the negative aspects of that result and
we find at best conditional stability. Again, all the problems come from the three
factor form. As an alternative, a two factor scheme can be employed where all the
positive terms and all the negative terms are lumped together,

1+ h(82A* + 60 BY + 65CH)| [T+ h(8JA™ + /B~ +61C7)| AQ" = R (12.37)

This two factor scheme produces a purely upper and lower triangular matrix
system (this is obvious from the purely backward and then forward form of the two
implicit operators) and can be solved as lower/upper sweeps. The disadvantage of the
two factor scheme is that it is harder to vectorize/parallelized , the recursive nature of
the sweeps making the identification of a vectorizable/parallelable direction difficult.
In contrast, for the three factor scheme, each operator is one-dimensional and can be
vectorized /parallelized over one or both of the other directions.

The three-factor implicit central difference scheme suffers from a bad reputation
resulting from the linear instability as shown above. In general. for practical prob-
lems this doesn’t seem to be a real restriction. Nevertheless, one would like to employ
schemes which are at least stable in the linear sense. In that regard, an alternative
algorithm can be used where flux splitting is employed in one coordinate direction
and central differences in the other 2 directions. This produces a two factor implicit

12.7. FACTORED FORMS EMPLOYING FLUX SPLITTING 207

scheme which has central difference characteristics in two coordinate directions (usu-
ally the near normal and some other cross flow direction) and an upwind nature in
one direction (usually chosen in the major flow direction). The advantages of this
scheme is the two factor operator which can be shown to be unconditionally stable
in the linear constant coefficient case and the upwind nature of one of the operators
which is usually chosen in the direction perpendicular to a shock or flow disconinuity.
Consider, for example, a blunt cone at angle of attack. The two factor scheme would
use flux splitting in the axial direction, and central differences in the circumferential
and body normal directions. Note that in inviscid supersonic axial flow, the scheme
could reduce to pure supersonic marching, which can be very efficient.
For demonstration, we flux split the z direction,
% + 8 EY + 6 ET 4+ 6,F +6,G =0

where first or second order differences can be employed for 6° and 6/ and second order
central differences for ¢, and 6,. The “delta” form of Euler implicit time differencing
is given as

[+h68AT +h6,B| |1+ h6IA~+h6.C] AQ" =
—h (BT + 6B+ 6,F +6.G) =0 (12.38)

where the 6% A* implicit operator is placed with the y operator and the 6/ A~ operator
is placed with the z operator. This produces a two-factor scheme which is lower
diagonal in z coupled with block tridiagonal in y for the first operator, which can
be solved by sweeping in z within an LU decomposition in y. The z operator is
handled similarly except that it is upper block diagonal in = and block tridiagonal
in z. This produces an efficient algorithm which does not suffer directly from the
three-factor linear instability. The first operator can be vectorized in z while the
second is vectorized in y.

